Your Ad Here

Pembagian File Sistem Secara Ortogonal

Posted by Rahadian Syarif | 4:19 AM | 0 comments »

Shareable dan Unshareable


1.

Shareable

Isinya dapat dishare (digunakan bersama) dengan sistem lain,
gunanya untuk menghemat tempat.
2.

Unshareable

Isinya tidak dapat dishare(digunakan bersama) dengan sistem lain,
biasanya untuk alasan keamanan.


Variabel dan Static

1.

Variabel

Isinya sering berubah-ubah.
2.

Static

Sekali dibuat, kecil kemungkinan isinya akan berubah. Bisa berubah
jika ada campur tangan sistem admin.

Load dan Eksekusi Program

Posted by Rahadian Syarif | 4:15 AM | 0 comments »

Load dan Eksekusi Program

1.

Penempatan program dalam memori

Linux membuat tabel-tabel fungsi untuk loading program, memberikan kesempatan kepada setiap fungsi untuk meload file yang diberikan saat sistem call exec dijalankan. Pertama-tama file binari dari page ditempatkan pada memori virtual. Hanya pada saat program mencoba mengakses page yang telah diberikan terjadi page fault, maka page akan diload ke memori fisik.
2.

Linking statis dan linking dinamis

1.

Linking statis:

librari-librari yang digunakan oleh program ditaruh secara
langsung dalam file binari yang dapat dieksekusi. Kerugian dari linking
statis adalah setiap program harus mengandung kopi library sistem yang umum.
2.

Linking dinamis:

hanya sekali meload librari sistem menuju memori. Linking dinamis
lebih efisien dalam hal memori fisik dan ruang disk.

Pengaksesan Memori Virtual Bersama dan Efisiensi

Posted by Rahadian Syarif | 4:12 AM | 0 comments »

Pengaksesan memori virtual bersama

Memori virtual mempermudah proses untuk berbagi memori saat semua akses ke memori menggunakan tabel page. Proses yang akan berbagi memori virtual yang sama, page fisik yang sama direference oleh banyak proses. Tabel page untuk setiap proses mengandung anggota page table yang mempunyai PFN fisik yang sama.

Efisiensi

Desainer dari CPU dan sistem operasi berusaha meningkatkan kinerja dari sistem. Disamping membuat prosesor, memori semakin cepat, jalan terbaik adalah manggunakan cache. Berikut ini adalah beberapa cache dalam manajemen memori di linux:

1.

Page Cache

Digunakan untuk meningkatkan akses ke image dan data dalam disk. Saat dibaca dari disk, page dicache di page cache. Jika page ini tidak dibutuhkan lagi pada suatu saat, tetapi dibutuhkan lagi pada saat yang lain, page ini dapat segera diambil dari page cache.

2.

Buffer Cache

Page mungkin mengandung buffer data yang sedang digunakan oleh kernel, device driver dan lain-lain. Buffer cache tampak seperti daftar buffer. Contohnya, device driver membutuhkan buffer 256 bytes, adalah lebih cepat untuk mengambil buffer dari buffer cache daripada mengalokasikan page fisik lalu kemudian memecahnya menjadi 256 bytes buffer-buffer.

3.

Swap Cache

Hanya page yang telah ditulis ditempatkan dalam swap file. Selama page ini tidak mengalami perubahan setelah ditulis ke dalam swap file, maka saat berikutnya page di swap out tidak perlu menuliskan kembali jika page telah ada di swap file. Di sistem yang sering mengalami swap, ini dapat menghemat akses disk yang tidak perlu.

Salah satu implementasi yang umum dari hardware cache adalah di CPU, cache dari anggota tabel page. Dalam hal ini, CPU tidak secara langsung membaca tabel page, tetap mencache terjemahan page yang dibutuhkan.

Swaping

Posted by Rahadian Syarif | 4:11 AM | 0 comments »

Swaping

Jika memori fisik tiba-tiba habis dan proses ingin memindahkan sebuah page ke memori, sistem operasi harus memutuskan apa yang harus dilakukan. Sistem operasi harus adil dalam mambagi page fisik dalam sistem diantara proses yang ada, bisa juga sistem operasi menghapus satu atau lebih page dari memori untuk membuat ruang untuk page baru yang dibawa ke memori. Cara page virtual dipilih dari memori fisik berpengaruh pada efisiensi sistem.

Linux menggunakan tehnik page aging agar adil dalam memilih page yang akan dihapus dari sistem. Ini berarti setiap page memiliki usia sesuai dengan berapa sering page itu diakses. Semakin sering sebuah page diakses, semakin muda page tersebut. Page yang tua adalah kandidat untuk diswap.

Demand Paging

Posted by Rahadian Syarif | 4:09 AM | 0 comments »

Demand Paging

Cara untuk menghemat memori fisik adalah dengan hanya meload page virtual yang sedang digunakan oleh program yang sedang dieksekusi. Tehnik dimana hanya meload page virtual ke memori hanya ketika program dijalankan disebut demand paging.

Ketika proses mencoba mengakses alamat virtual yang tidak ada di dalam memori, CPU tidak dapat menemukan anggota tabel page. Contohnya, dalam gambar, tidak ada anggota tabel page untuk proses x untuk virtual PFN 2 dan jika proses x ingin membaca alamat dari virtual PFN 2, CPU tidak dapat menterjemahkan alamat ke alamat fisik. Saat ini CPU bergantung pada sistem operasi untuk menangani masalah ini. CPU menginformasikan kepada sistem operasi bahwa page fault telah terjadi, dan sistem operasi membuat proses menunggu selama sistem operasi menagani masalah ini.

CPU harus membawa page yang benar ke memori dari image di disk. Akses disk membutuhkan waktu yang sangat lama dan proses harus menunggu sampai page selesai diambil. Jika ada proses lain yang dapat dijalankan, maka sistem operai akan memilihnya untuk kemudian dijalankan. page yang diambil kemudian dituliskan di dalam page fisik yang masih kosong dan anggota dari virtual PFN ditambahkan dalam tabel page proses. Proses kemudian dimulai lagi pada tempat dimana page fault terjadi. Saat ini terjadi pengaksesan memori virtual, CPU membuat penerjemahan dan kemudian proses dijalankan kembali.

Demand paging terjadi saat sistem sedang sibuk atau saat image pertama kali diload ke memori. Mekanisme ini berarti sebuah proses dapat mengeksekusi image dimana hanya sebagian dari image tersebut terdapat dalam memori fisik.

Manajemen Memori Fisik di Linux

Posted by Rahadian Syarif | 4:07 AM | 0 comments »

Manajemen Memori Fisik

Bagian ini menjelaskan bagaimana linux menangani memori
dalam sistem. Memori manajemen merupakan salah satu
bagian terpenting dalam sistem operasi. Karena adanya
keterbatasan memori, diperlukan suatu strategi dalam
menangani masalah ini. Jalan keluarnya adalah dengan
menggunakan memori virtual. Dengan memori virtual,
memori tampak lebih besar daripada ukuran yang sebenarnya.

Dengan memori virtual kita dapat:

1.

Ruang alamat yang besar

Sistem operasi membuat memori terlihat lebih besar
daripada ukuran memori sebenarnya. Memori virtual
bisa beberapa kali lebih besar daripada memori fisiknya.
2.

Pembagian memori fisik yang dil

Manajemen memori membuat pembagian yang adil dalam
pengalokasian memori antara proses-proses.
3.

Perlindungan

Memori manajemen menjamin setiap proses dalam sistem
terlindung dari proses-proses lainnya. Dengan demikian,
program yang crash tidak akan mempengaruhi proses lain
dalam sistem tersebut.
4.

Penggunaan memori virtual bersama

Memori virtual mengijinkan dua buah proses berbagi memori
diantara keduanya, contohnya dalam shared library.
Kode library dapat berada di satu tempat, dan tidak
dikopi pada dua program yang berbeda.

Symmetric Multiprocessing

Posted by Rahadian Syarif | 5:17 AM | 0 comments »

Kernel Linux 2.0 adalah kernel Linux pertama yang stabil untuk mendukung perangkat keras symmetric multiprocessor (SMP). Proses maupun thread yang berbeda dapat dieksekusi secara paralel dengan processor yang berbeda. Tapi bagaimana pun juga untuk menjaga kelangsungan kebutuhan sinkronisasi yang tidak dapat dipreemptive dari kernel, penerapan SMP ini menerapkan aturan dimana hanya satu processor yang dapat dieksekusi dengan kode mode kernel pada suatu saat. SMP menggunakan kernel spinlock tunggal untuk menjalankan aturan ini. Spinlock ini tidak memunculkan permasalahan untuk pekerjaan yang banyak menghabiskan waktu untuk menunggu proses komputasi, tapi untuk pekerjaan yang melibatkan banyak aktifitas kernel, spinlock dapat menjadi sangat mengkhawatirkan.

Sebuah proyek yang besar dalam pengembangan kernel Linux 2.1 adalah untuk menciptakan penerapan SMP yang lebih masuk akal, dengan membagi kernel spinlock tunggal menjadi banyak kunci yang masing - masing melindungi terhadap masuknya kembali sebagian kecil data struktur kernel. Dengan menggunakan teknik ini, pengembangan kernel yang terbaru mengijinkan banyak processor untuk dieksekusi oleh kode mode kernel secara bersamaan.

Sinkronisasi Kernel

Posted by Rahadian Syarif | 5:10 AM | 0 comments »

Sinkronisasi Kernel

Cara penjadwalan kernel pada operasinya secara mendasar berbeda dengan cara penjadwalan suatu proses. Terdapat dua cara agar sebuah permintaan akan eksekusi kernel-mode dapat terjadi. Sebuah program yang berjalan dapat meminta service sistem operasi, dari system call ataupun secara implisit (untuk contoh:ketika page fault terjadi). Sebagai alternatif, device driver dapat mengirim interupsi perangkat keras yang menyebabkan CPU memulai eksekusi kernel-define handler untuk suatu interupsi.

Problem untuk kernel muncul karena berbagai tasks mungkin mencoba untuk mengakses struktur data internal yang sama. Jika hanya satu kernel task ditengah pengaksesan struktur data ketika interupsi service routine dieksekusi, maka service routine tidak dapat mengakses atau merubah data yang sama tanpa resiko mendapatkan data yang rusak. Fakta ini berkaitan dengan ide dari critical section (baca sinkronisasi proses).

Sehagai hasilnya, sinkronisasi kernel melibatkan lebih banyak dari hanya penjadwalan proses saja. sebuah framework dibutuhkan untuk memperbolehkan kernel's critical sections berjalan tanpa diinterupsi oleh critical section yang lain.

Solusi pertama yang diberikan oleh linux adalah membuat normal kernel code nonpreemptible (baca proses). Biasanya, ketika sebuah timer interrupt diterima oleh kernel, membuat penjadwalan proses, kemungkinan besar akan menunda eksekusi proses yang sedang berjalan pada saat itu dan melanjutkan menjalankan proses yang lain. Biar bagaimanapun, ketika timer interrupt diterima ketika sebuah proses mengeksekusi kernel-system service routine, penjadwalan ulang tidak dilakukan secara mendadak; cukup, kernel need_resched flag terset untuk memberitahu kernel untuk menjalankan penjadwalan kembali setelah system call selesai dan control dikembalikan ke user mode.

Sepotong kernel code mulai dijalankan, akan terjamin bahwa itu adalah satu-satunya kernel code yang dijalankan sampai salah satu dari aksi dibawah ini muncul:

*

interupsi
*

page fault
*

kernel code memanggil fungsi penjadwalan sendiri

Interupsi adalah suatu masalah bila mengandung critical section-nya sendiri. Timer interrupt tidak secara langsung menyebabkan terjadinya penjadwalan ulang suatu proses; hanya meminta suatu jadwal untuk dilakukan kemudian, jadi kedatangan suatu interupsi tidak mempengaruhi urutan eksekusi dari noninterrupt kernel code . Sekali interrupt service selesai, eksekusi akan menjadi lebih simpel untuk kembali ke kernel code yang sedang dijalankan ketika interupsi mengambil alih.

Page faults adalah suatu masalah yang potensial; jika sebuah kernel routine mencoba untuk membaca atau menulis ke user memory, akan menyebabkan terjadinyapage fault yang membutuhkan I/O disk untuk selesai, dan proses yang berjalan akan di tunda sampai I/O selesai. Pada kasus yang
hampir sama, jika system call service routine memanggil penjadwalan ketika sedang berada di mode kernel, mungkin secara eksplisit dengan membuat direct call pada code penjadwalan atau secara implisit dengan memanggil sebuah fungsi untuk menunggu I/O selesai, setelah itu proses akan menunggu dan penjadwalan ulang akan muncul. Ketika proses jalan kembali, proses tersebut akan melanjutkan untuk mengeksekusi dengan mode kernel, melanjutkan intruksi setelah call (pemanggilan) ke penjadwalan.

Kernel code dapat terus berasumsi bahwa ia tidak akan diganggu (preemted) oleh proses lainnya dan tidak ada tindakan khusus dilakukan untuk melindungi critical section. Yang diperlukan adalah critical section tidak mengandung referensi ke user memory atau menunggu I/O selesai.

Teknik kedua yang di pakai Linux untuk critical section yang muncul pada saat interrupt service routines . Alat dasarnya adalah perangkat keras interrupt-control pada processor. Dengan meniadakan interupsi pada saat critical section, maka kernel menjamin bahwa ia dapat melakukan proses tanpa resiko terjadinya ketidak-cocokan akses dari struktur data yang di share.

Untuk meniadakan interupsi terdapat sebuah pinalti. Pada arsitektur perangkat keras kebanyakan, pengadaan dan peniadaan suatu interupsi adalah sesuatu yang mahal. Pada prakteknya, saat interupsi ditiadakan, semua I/O ditunda, dan device yang menunggu untuk dilayani akan menunggu sampai interupsi diadakan kembali, sehingga kinerja meningkat. Kernel Linux menggunakan synchronization architecture yang mengijinkan critical section yang panjang dijalankan untuk seluruh durasinya tanpa mendapatkan peniadaan interupsi. Kemampuan secara spesial berguna pada networking code : Sebuah interupsi pada network device driver dapat memberikan sinyal kedatangan dari keseluruhan paket network, dimana akan menghasilkan code yang baik dieksekusi untuk disassemble, route, dan forward paket ditengah interrupt service routine.

Linux mengimplementasikan arsitektur ini dengan memisahkan interrupt service routine menjadi dua seksi: the top half dan the bottom half. The top half adalah interupsi yang normal, dan berjalan dengan rekursif interupt ditiadakan ( interupsi dengan prioritas yang lebih tinggi dapat menginterupsi routine, tetapi interupsi dengan prioritas yang sama atau lebih
rendah ditiadakan). The bottom half service routine berjalan dengan semua interupsi diadakan, oleh miniatur penjadwalan yang menjamin bahwa bottom halves tidak akan menginterupsi dirinya sendiri. The bottom half scheduler dilakukan secara otomatis pada saat interupt service routine ada.

Pemisahan itu berarti bahwa kegiatan proses yang komplek dan harus selesai diberi tanggapan untuk suatu interupsi dapat diselesaikan oleh kernel tanpa kecemasan tentang diinterupsi oleh interupsi itu sendiri. Jika interupsi lain muncul ketika bottom half dieksekusi, maka interupsi dapat meminta kepada bottom half yang sama untuk dieksekusi, tetapi eksekusinya akan dilakukan setelah proses yang sedang berjalan selesai. Setiap eksekusi dari bottom half dapat di interupsi oleh top half tetapi tidak dapat diinterupsi dengan bottom half yang mirip.

Arsitektur Top-half bottom-half komplit dengan mekanisme untuk meniadakan bottom halver yang dipilih ketika dieksekusi secara normal, foreground kernel code. Kernel dapat meng-codekan critical section secara mudah dengan mengunakan sistem ini: penanganan interupsi dapat meng-codekan critical section-nya sebagai bottom halves, dan ketika foreground kernel ingin masuk ke critical section, setiap bottom halves ditiadakan untuk mencegah critical section yang lain diinterupsi. Pada akhir dari critical section, kernel dapat kembali mengadakan bottom halves dan menjalankan bottom half tasks yang telah di masukkan kedalam queue oleh top half interrupt service routine pada saat critical section .

Penjadwalan Proses Linux

Posted by Rahadian Syarif | 5:06 AM | 1 comments »

Penjadwalan Proses Linux

Ketika kernel telah mencapai titik penjadwalan ulang, entah karena terjadi interupsi penjadwalan ulang maupun karena proses kernel yang sedang berjalan telah diblokir untuk menunggu beberapa signal bangun, harus memutuskanproses selanjutnya yang akan dijalankan. Linux telah memiliki dua algoritma penjadwalan proses yang terpisah satu sama lain. Algoritma yang pertama adalah algoritma time-sharing untuk penjadwalan preemptive yang adil diantara sekian banyak proses. Sedangkan algoritma yang kedua didesain untuk tugas real-time dimana proritas mutlak lebih utama daripada keadilan mendapatkan suatu pelayanan.

Bagian dari tiap identitas proses adalah kelas penjadwalan, yang akan menentukan algoritma yang digunakan untuk tiap proses. Kelas penjadwalan yang digunakan oleh Linux, terdapat dalam standar perluasan POSIX untuk sistem komputer waktu nyata.

Untuk proses time-sharing, Linux menggunakan teknik prioritas, sebuah algoritma yang berdasarkan pada kupon. Tiap proses memiliki sejumlah kupon penjadwalan; dimana ketika ada kesempatan untuk menjalankan sebuah tugas, maka proses dengan kupon terbanyaklah yang mendapat giliran. Setiap kali terjadi interupsi waktu, proses yang sedang berjalan akan kehilangan satu kupon; dan ketika kupon yang dimiliki sudah habis maka proses itu akan ditunda dan proses yang lain akan diberikan kesempatan untuk masuk.

Jika proses yang sedang berjalan tidak meiliki kupon sama sekali, linux akan melakukan operasi pemberian kupon, memberikan kupon kepada tiap proses dalam sistem, dengan aturan main: kupon = kupon / 2 + prioritas Algoritma ini cenderung untuk menggabungkan dua faktor yang ada: sejarah proses dan prioritas dari proses itu sendiri. Satu setengah dari kupon yang dimiliki sejak operasi pembagian kupon terakhir akan tetap dijaga setelah algoritma
telah dijalankan, menjaga beberapa sejarah sikap proses. Proses yang berjalan sepanjang waktu akan cenderung untukmenghabiskan kupon yang dimilikinya dengan cepat, tapi proses yang lebih banyak menunggu dapat mengakumulasi kuponnya dari. Sistem pembagian kupon ini, akan secara otomatis memberikan proritas yang tinggi ke proses I/O bound ataupun interaktif, dimana respon yang cepat sangat diperlukan.

Kegunaan dari proses pemberian prioritas dalam menghitung kupon baru, membuat prioritas dari suatu proses dapat ditingkatkan. Pekerjaan background batch dapat diberikan prioritas yang rendah; proses tersebut akan secara otomatis menerima kupon yang lebih sedikit dibandingkan dengan pekerjaan yang interaktif, dan juga akan menerima persentase waktu CPU yang lebih sedikit dibandingan dengan tugas yang sama dengan prioritas yang lebih tinggi. Linux menggunakan sistem prioritas ini untuk menerapkan mekanisme standar pembagian prioritas proses yang lebih baik.

Penjadwalan waktu nyata Linux masih tetap lebih sederhana. Linux, menerapkan dua kelas penjadwalan waktu nyata yang dibutuhkan oleh POSIX 1.b: First In First Out dan round-robin. Pada keduanya, tiap proses memiliki prioritas sebagai tambahan kelas penjadwalannya. Dalam penjadwalan time-sharing , bagaimanapun juga proses dengan prioritas yang berbeda dapat bersaing dengan beberapa pelebaran; dalam penjadwalan waktu nyata, si pembuat jadwal selalu menjalankan proses dengan prioritas yang tinggi. Diantara proses dengan prioritas yang sama, maka proses yang sudah menunggu lama, akan dijalankan. Perbedaan satu - satunya antara penjadwalan FIFO dan round-robin adalah proses FIFO akan melanjutkan prosesnya sampai keluar ataupun diblokir, sedangkan proses round-robin akan dipreemptivekan setelah beberapa saat dan akan dipindahkan ke akhir antrian, jadi proses round-robin dengan prioritas yang sama akan secara otomatis membagi waktu jalan antar mereka sendiri.

Perlu diingat bahwa penjadwalan waktu nyata di Linux memiliki sifat yang lunak. Pembuat jadwal Linux menawarkan jaminan yang tegas mengenai prioritas relatif dari proses waktu nyata, tapi kernel tidak menjamin seberapa cepat penjadwalan proses waktu-nyata akan dijalankan pada saat proses siap dijalankan. Ingat bahwa kode kernel Linux tidak akan pernah bisa dipreemptive oleh kode mode pengguna. Apabila terjadi interupsi yang membangunkan proses waktu nyata, sementara kernel siap untuk mengeksekusi sebuah sistem call sebagai bagian proses lain, proses waktu nyata harus menunggu sampai sistem call yang sedang dijalankan selesai atau diblokir.

Penjadwalan

Posted by Rahadian Syarif | 5:04 AM | 0 comments »

Penjadwalan

Penjadwalan adalah suatu pekerjaan yang dilakukan untuk mengalokasikan CPU time untuk tasks yang berbeda-beda dalam sistem operasi. Pada umumnya, kita berfikir penjadwalan sebagai menjalankan dan menginterupsi suatu proses, untuk linux ada aspek lain yang penting dalam penjadwalan: seperti menjalankan dengan berbagai kernel tasks . Kernel tasks meliputi task yang diminta oleh proses yang sedang dijalankan dan tasks yand dieksekusi internal menyangkut device driver yang berkepentingan.

Virtual Memory di Linux

Posted by Rahadian Syarif | 4:10 AM | 0 comments »

Memori Virtual di Linux..??


Memori fisik dan memori virtual dibagi menjadi bagian-bagian yang disebut page. Page ini memiliki ukuran yang sama besar. Tiap page ini punya nomor yang unik, yaitu Page Frame Number (PFN). Untuk setiap instruksi dalam program, CPU melakukan mapping dari alamat virtual ke memori fisik yang sebenarnya.

Penerjemahan alamat di antara virtual dan memori fisik dilakukan oleh CPU menggunakan tabel page untuk proses x dan proses y. Ini menunjukkan virtial PFN 0 dari proses x dimap ke memori fisik PFN 1. Setiap anggota tabel page mengandung informasi berikut ini:

1. Virtual PFN
2. PFN fisik
3. informasi akses page dari page tersebut


Untuk menerjemahkan alamat virtual ke alamat fisik, pertama-tama CPU harus menangani alamat virtual PFN dan offsetnya di virtual page. CPU mencari tabel page proses dan mancari anggota yang sesuai degan virtual PFN. Ini memberikan PFN fisik yang dicari. CPU kemudian mengambil PFN fisik dan mengalikannya dengan besar page untuk mendapat alamat basis page tersebut di dalam memori fisik. Terakhir, CPU menambahkan offset ke instruksi atau data yang dibutuhkan. Dengan cara ini, memori virtual dapat dimap ke page fisik dengan urutan yang teracak.

Resolusi Konflik Linux

Posted by Rahadian Syarif | 4:07 AM | 0 comments »

Resolusi Konflik

Keanekaragaman konfigurasi perangkat keras komputer serta driver yang mungkin terdapat pada sebuah komputer pribadi telah menjadi suatu masalah tersendiri. Masalah pengaturan konfigurasi perangkat keras tersebut menjadi semakin kompleks akibat dukungan terhadap device driver yang modular, karena device yang aktif pada suatu saat bervariasi.

Linux menyediakan sebuah mekanisme penyelesaian masalah untuk membantu arbitrasi akses terhadap perangkat keras tertentu. Tujuan mekanisme tersebut adalah untuk mencegah modul berebut akses terhadap suatu perangkat keras, mencegah autoprobes mengusik keberadaan driver yang telah ada, menyelesaikan konflik di antara sejumlah driver yang berusaha mengakses perangkat keras yang sama.

Kernel membuat daftar alokasi sumber daya perangkat keras. Ketika suatu driver hendak mengakses sumber daya melalui Input-Output port, jalur interrupt, ataupun kanal DMA, maka driver tersebut diharapkan mereservasi sumber daya tersebut pada basis data kernel terlebih dahulu. Jika reservasinya ditolak akibat ketidaktersediaan sumber daya yang diminta, maka modul harus memutuskan apa yang hendak dilakukan selanjutnya. Jika tidak dapat melanjutkan, maka modul tersebut dapat dihapus.

Modul Kernel Linux

Posted by Rahadian Syarif | 4:04 AM | 0 comments »

Apakah Modul Kernel Linux itu?

Modul kernel Linux adalah bagian dari kernel Linux yang dapat dikompilasi, dipanggil dan dihapus secara
terpisah dari bagian kernel lainnya saat dibutuhkan. Modul kernel dapat menambah fungsionalitas kernel tanpa perlu me-reboot sistem. Secara teori tidak ada yang dapat membatasi apa yang dapat dilakukanoleh modul kernel. Kernel modul dapat mengimplementasikan antara lain device driver, sistem berkas, protokol jaringan.

Modul kernel Linux memudahkan pihak lain untuk meningkatkan fungsionalitas kernel tanpa harus membuat sebuah kernel monolitik dan menambahkan fungsi yang mereka butuhkan langsung ke dalam image dari kernel. Selain hal tersebut akan membuat ukuran kernel menjadi lebih besar, kekurangan lainnya adalah mereka harus membangun dan me-reboot kernel setiap saat hendak menambah fungsi baru. Dengan adanya modul maka setiap pihak dapat dengan mudah menulis fungsi-fungsi baru dan bahkan mendistribusikannya sendiri, di luar GPL.

Kernel modul juga memberikan keuntungan lain yaitu membuat sistem Linux dapat dinyalakan dengan kernel standar yang minimal, tanpa tambahan device driver yang ikut dipanggil. Device driver yang dibutuhkan dapat dipanggil kemudian secara eksplisit maupun secara otomatis saat dibutuhkan.

Terdapat tiga komponen untuk menunjang modul kernel Linux. Ketiga komponen tersebut adalah manajemen modul, registrasi driver, dan mekanisme penyelesaian konflik. Berikut akan dibahas ketiga komponen pendukung tersebut.

Registrasi Driver

Posted by Rahadian Syarif | 3:44 AM | 0 comments »

Untuk membuat modul kernel yang baru dipanggil berfungsi, bagian dari kernel yang lain harus mengetahui keberadaan dan fungsi baru tersebut. Kernel membuat tabel dinamis yang berisi semua driver yang telah diketahuinya dan menyediakan serangkaian routines untuk menambah dan menghapus driver dari tabel tersebut. Routines ini yang bertanggungjawab untuk mendaftarkan fungsi modul baru tersebut.

Hal-hal yang masuk dalam tabel registrasi adalah:

* device driver
* sistem berkas
* protokol jaringan
* format binari

Manajemen Kernel Linux

Posted by Rahadian Syarif | 3:19 AM | 0 comments »

Manajemen modul akan mengatur pemanggilan modul ke dalam memori dan berkomunikasi dengan bagian
lainnya dari kernel. Memanggil sebuah modul tidak hanya memasukkan isi binarinya ke dalam memori kernel, namun juga harus dipastikan bahwa setiap rujukan yang dibuat oleh modul ke simbol kernel ataupun titik masukan diperbaharui untuk menunjuk ke lokasi yang benar di alamat kernel. Linux membuat tabel simbol internal di kernel. Tabel ini tidak memuat semua simbol yang didefinisikan di kernel saat kompilasi, namun simbol-simbol tersebut harus diekspor secara eksplisit oleh kernel. Semua hal ini diperlukan untuk penanganan rujukan yang dilakukan oleh modul terhadap simbol-simbol.

Pemanggilan modul dilakukan dalam dua tahap. Pertama, utilitas pemanggil modul akan meminta kernel untuk mereservasi tempat di memori virtual kernel untuk modul tersebut. Kernel akan memberikan alamat memori yang dialokasikan dan utilitas tersebut dapat menggunakannya untuk memasukkan kode mesin dari modul tersebut ke alamat pemanggilan yang tepat. Berikutnya system calls akan membawa modul, berikut setiap tabel simbol yang hendak, ke kernel. Dengan demikian modul tersebut akan berada di alamat yang telah dialokasikan dan tabel simbol
milik kernel akan diperbaharui.

Komponen manajemen modul yang lain adalah peminta modul. Kernel mendefinisikan antarmuka komunikasi yang dapat dihubungi oleh program manajemen modul. Saat hubungan tercipta, kernel akan menginformasikan proses manajemen kapanpun sebuah proses meminta device driver, sistem berkas,atau layanan jaringan yang belum terpanggil dan memberikan manajer kesempatan untuk memanggil layanan tersebut. Permintaan layanan akan selesai saat modul telah terpanggil.
Manajer proses akan memeriksa secara berkala apakah modul tersebut masih digunakan, dan akan menghapusnya saat tidak diperlukan lagi.

Your Ad Here